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Abstract

Objective: Effective solutions to obesity remain elusive, partly owing to its root in a

positive energy balance (EB), which stems from the interplay of numerous traits

spanning body size and composition, diet, physical activity, and metabolic profile.

Nevertheless, EB-contributing traits are typically studied in isolation. We integrate

numerous EB-related traits measured in the UK Biobank to uncover the underlying

patterns of EB and associated genes in study participants.

Methods: We used sparse factor analysis to integrate traits and performed genome-

wide association analyses on the integrated phenotypes to elucidate EB-related

genes and metabolic pathways. We performed pleiotropy analyses on candidate

single-nucleotide polymorphisms to uncover the genetic basis of EB.

Results: We identified multiple genes and genomic regions associated with EB,

including many that have previously not been directly associated with obesity mea-

sures (e.g., MIR5591, FNDC3B, ANAPC10, SULT1A1, AXIN1, SKIDA1, ERLIN1, DOCK7),

which we validated using an independent subset of the UK Biobank dataset along

with data from the Atherosclerosis Risk in Communities cohort. We found that the

covariances in EB traits are primarily driven by genome-wide pleiotropic associations.

Conclusions: We offer new insight into EB patterns and the genetic basis of EB.

INTRODUCTION

Excessive calorie intake and low physical activity contribute to a

positive energy balance (EB) [1], the primary cause of obesity. In turn,

obesity increases the risk for many health conditions including

cardiovascular diseases [2], metabolic syndrome [2], cancer [2, 3], kid-

ney disease [2], complications with infectious diseases such as

COVID-19 [4], and mechanical issues [2]. Studying EB is challenging

because it involves numerous traits acting in concert, including

physical activity, diet, and body size traits [1]. Analyses of these traits

in isolation have unveiled many genes (e.g., FTO, APOB, GHR, PCSK1)

that contribute each of the different components of EB [5]. However,

because EB is a compound of many traits that need to be addressed

simultaneously, many obesity-related genes are yet to be identified.

Traits contributing to EB are known to have a genetic basis [5].

Animal studies have demonstrated inter-strain differences in the pre-

disposition to physical activity [6] and feeding behavior [7]. In

humans, many genes influence food preference and physical activity

adherence [6]. However, the multivariate representation of EB, and

the comprehensive set of EB-related genes, remains undefined.See Commentary, pg. X.
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Studying patterns of variation among numerous EB-related traits

simultaneously may elucidate how the candidate genes shape EB and

enhance the ability to detect yet unknown genes associated with this

compound trait.

Additionally, a multivariate analysis of EB-related traits may be

particularly valuable for detecting pleiotropic genes that affect several

traits [8]. For example, some EB-related genes (e.g., FTO) exhibit pleio-

tropic associations with several EB components, including diet, physi-

cal activity, body size, and obesity risk [9]. Alleles at pleiotropic loci

affect several phenotypes, producing genetic correlations. Notably,

EB-related traits tend to be genetically correlated with other

EB-related traits [10, 11]. Therefore, analyzing patterns of variation

and the combined effects of EB-related traits can provide additional

power to detect these otherwise elusive genes.

Studying EB traits simultaneously will aid in uncovering unknown

genetic roots of EB. This can be achieved by constructing new vari-

ables that capture compound effects from multiple traits via latent

factor analysis. Previous studies have focused on specific categories

of traits such as diet [12, 13] or physical activity [14]. Joo et al. used

sparse latent factor to describe dietary patterns [12] and examine

their relationship with physical activity [13]. Johnson et al. [15] inte-

grated dietary traits to investigate their correlation with metabolites

linked to islet autoimmunity (type I diabetes) using reduced rank

regression, whereas Xu et al. [14] identified patterns within physical

activity using functional principal components. Advantages of these

integrative studies include lower type I errors and increased power to

detect underlying loci than other multivariate methods, such as multi-

variate ANOVA and separate regressions [8]. However, none of these

studies have addressed an extensive set of complex traits across dif-

ferent categories that contribute to EB or examined genetic variants

contributing to the combined traits.

In this study, we aim to identify patterns of EB (PEBs) from

healthy individuals and use these patterns to uncover the underlying

genetics. In order to achieve this, we integrated an extensive set of

EB-contributing traits, categorized as body size and composition, diet,

physical activity, and metabolic profiles, from the UK Biobank

(UKB) [16]. We also identified genetic variants in association with

PEBs and generated a set of candidate genes, including known and

new genes with putative effects on EB. Finally, we performed a com-

prehensive validation using two datasets. Our approach thus robustly

accounts for the complex biology of EB and uncovers the combined

EB profiles in participants.

METHODS

The data used for this study consisted of genotypes, phenotypes, and

demographics of individuals of European ancestry from the UKB. The

discovery set included 219,049 distantly related Europeans. For inter-

nal validation, we used 72,153 independent European UKB partici-

pants, and external validation was performed using data from 9618

individuals of European ancestry from the Atherosclerosis Risk in

Communities (ARIC) study [17].

We assume that EB in healthy individuals is primarily driven by

energy in and out of the body indicated by the 32 traits (Table 1) that

belonged to one of four categories: blood biomarkers (4 phenotypes),

body size and composition (5), food consumption (17), and physical

activity (6). Phenotypes were preadjusted by sex; age and age

squared; sex-by-age interaction; recruitment center [18]; five single-

nucleotide polymorphism (SNP)-derived principal components [19];

and Townsend Deprivation Index, household income, and participant

qualifications. Additionally, blood biomarkers were adjusted for the

use of medication [20] and the time since the last meal.

Although body mass index (BMI) is not included directly, we have

incorporated its components, i.e., body weight and height, into PEBs.

Glucose and triglycerides in blood have been included as dietary

indicators.

For genotypes, we performed standard quality control and filter-

ing of imputed SNPs with a resulting 13,113,819 SNPs (online Sup-

porting Information Methods).

The PEBs were derived using sparse singular value decomposition

on the adjusted and standardized phenotypes [21]. Briefly, this proce-

dure extracts mutually independent features similar to standard prin-

cipal components; however, the use of a sparsity penalty leads to

some of the feature loadings being reduced to zero, which facilitates

the interpretation of the patterns and phenotypes linked to them. A

95% confidence interval (CI) was built with the bootstrap procedure.

Study Importance

What is already known?

• Obesity arises from a complex interplay of numerous

traits that contribute to energy balance (EB), many of

which have a genetic basis.

• Whereas the genetics of individual traits have been stud-

ied, a comprehensive analysis of the integrated traits has

not been conducted, to our knowledge.

What does this study add?

• This study highlights the utility of an integrative approach

to study multiple correlated traits simultaneously.

• This analysis is the first, to our knowledge, to report inte-

grated patterns of covariation in EB.

How might these results change the direction of

research or the focus of clinical practice?

• Association analyses identified genetic variants underly-

ing energy balance patterns and demonstrated that

genome-wide pleiotropic associations drive covariation in

the traits, which may inform future molecular studies.

• Integrated phenotypes provide new metrics that could

aid in understanding individual EB profiles.
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Genome-wide association analysis on PEBs

In order to identify variants associated with PEBs, we performed

standard single-SNP association testing using ordinary least-squares

regressions using the R package BGData (The R Project for Statistical

Computing) [22] on the �13 million call and imputed variants. This

rendered an association p value for each SNP available in the UKB

and each PEB; we use a conservative threshold to declare the signifi-

cance of 1�10�8

q with q=5 to account for multiple testing (PEBs 1–5).

For comparison, we also tested for association with individual

phenotypes using multitrait genome-wide association studies (GWAS)

(hereinafter referred as to “PLEIO”) implemented using the pleiotest R

package [23]. This package identifies variants associated with five,

four, three, two, and single phenotypes.

We grouped the variants associated with phenotypes into 1-

megabase (Mb) segments, annotated the closest gene, harboring vari-

ants significant for phenotypes using Ensembl’s online variant effect

prediction tool [24], and identified overlaps between GWAS findings

and expression quantitative trail loci (eQTLs) from the Genotype-Tis-

sue Expression (GTEx) Project [26] using LDlink [25]. We also identi-

fied pathways linked to PEBs (Ingenuity Pathway Analysis, QIAGEN

Inc.). Details are in online Supporting Information Methods.

RESULTS

Construction and characterization of PEBs

Hereafter, we will refer to the traits measured as “original” traits, as

opposed to “derived” by the integration of the original traits (i.e.,

PEBs). Original traits include dietary consumption from the UKB touch

screen questionnaire (intake of water, fresh vegetables, fresh fruit,

cooked vegetables, beef, pork, lamb, poultry, processed meats, oily

and nonoily fish, coffee, tea, bread, alcohol, cereal, and cheese), blood

biomarkers (glucose, triglycerides, cholesterol, and creatinine blood

levels), body size and composition (weight, height, waist circumfer-

ence, fat mass, and lean mass), and physical activity (intensity of walk-

ing, moderate and vigorous exercise, and frequency and duration of

exercise). Summary statistics of original traits are presented in

Table 1.

T AB L E 1 Characteristics of original traits used in the construction
of PEBs for the 219,049 UKB participants.

Summary statistics

Numerical variables
Median
(MAD)

% Missing
data

Blood biomarkers

Glucose, mmol/L 4.9 (0.5) 8.6

Cholesterol, mmol/L 5.8 (1.1) 0.0

Creatinine, μmol/L 70.0 (14) 0.1

Triglycerides, mmol/L 1.5 (0.8) 0.1

Body size and composition

Weight, kg 77.0 (15) 0.3

Height, cm 170.0 (10) 0.2

Waist circumference, cm 90.0 (13) 0.1

Lean mass, kg 52.0 (13) 1.6

Fat mass, kg 23 (8.0) 1.8

Physical activity

Moderate activity,

MET-min/wk

480 (620) 2.7

Vigorous activity,

MET-min/wk

240 (360) 2.7

Walking, MET-min/wk 690 (680) 2.7

Summed activity, MET-min/

wk

1800 (1700) 2.7

Summed days of activity 11 (4.4) 0.0

Summed minutes of activity 100 (74.0) 2.7

Dietary variables % Samples
% Missing
data

Cooked vegetable 97 2.2

Salad/raw vegetable 90 5.0

Fresh fruit 94 3.2

Oily fish 57 0.3

Nonoily fish 67 0.9

Processed meat 61 0.1

Poultry 85 0.1

Beef 44 0.2

Lamb/mutton 25 0.3

Pork 26 0.3

Cheese 82 2.2

Bread 98 1.5

Cereal 88 4.0

Tea 85 3.1

Coffee 78 7.0

(Continues)

T AB L E 1 (Continued)

Dietary variables % Samples
% Missing
data

Water 91 7.1

Alcohol 90 0.1

Note: Numerical measures are summarized with the median (MAD) in their

original units. Diet variables are summarized as the percentage of

participants consuming the food item at least once a week. The

percentage of missing data for all variables is presented in the third

column. Most activity variables are given in MET-minutes. A MET-minute

is computed by multiplying the MET (a measure of exercise intensity)

score by the minutes performed. The summed total of the actual number

of minutes of walking, moderate-intensity, and vigorous-intensity

activities per week is given in the last row of numerical variables. The

summed days of activity variable represents the sum of frequency (days)

of walking and moderate-intensity and vigorous-intensity activities

per week.

Abbreviations: MAD, median absolute deviation; MET, metabolic

equivalent of task; PEB, pattern of energy balance; UKB, UK Biobank.
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We used sparse factor analysis to uncover PEBs, defined as the

first five latent variables following the procedure by Josse and Hus-

son [21]. The analysis uses the correlation structure in data across the

multiple traits to generate integrative factors. These factors cumula-

tively capture 14%, 24%, 30%, 35%, and 39% of the interindividual

variance, as PEB1 through PEB5 are added sequentially. The contribu-

tion of the original traits to the construction of PEBs was measured

by the corresponding factors’ loadings (Figure 1). We imposed a spar-

sity constraint such that loading values near zero were considered a

negligible contribution. We characterized each PEB based on the fac-

tor loadings for the traits involved. PEB1 primarily captures variation

owing to individuals at a higher range of activity and lower body size,

fat mass, and lean mass, whereas PEB2 primarily captures variation

owing to a lower range of activity and body size, within the data.

PEB3 primarily captures variation owing to a diet based on relatively

low consumption of red meat with moderate consumption of pro-

cessed foods, alcohol, cheese, and tea compared to the rest of the

data. PEB4 primarily captures variation owing to intermediate height,

with relatively high fruit and vegetable consumption. Finally, PEB5 pri-

marily captures variation owing to individuals at a lower height range

with relatively higher triglyceride and cholesterol levels. The PEBs

summarize the combined variation in numerous traits across five

distinct categories.

The analysis provides scores across the five PEBs for each partici-

pant, which together form a unique EB profile per individual, summa-

rizing their dietary patterns, activity, body characteristics, and blood

metabolites simultaneously. PEB1 and PEB2 explain more variation

than any other factor and capture traits directly related to signals of

obesity measures (Figure 1). Individuals with high scores of PEB1 or

PEB2 are those in the lower range of body size and composition

and can be characterized as relatively lean within the data range.

Conversely, the low scores of these two PEBs capture obesity signals.

For PEB5, a high score signals metabolic disorder risk, with low height

potentially accounting for reduced body surface area and metabolic

rate [27], in addition to the contributions of elevated cholesterol and

triglycerides to disease risk. Using the participant scores for the five

PEBs as traits in downstream genomic analyses thereby allows us to

identify EB-related genetic loci.

PEBs are highly consistent across subsets of the data

For validation of PEBs, we analyzed the UKB White related partition

consisting of individuals who are genetically related to, but indepen-

dent of, the UKB sample used in the primary analysis. First, we gener-

ated PEBs with the same set of traits as the unrelated participants. In

the validation, the same traits contributed to PEBs, and the trait load-

ings (as given in Figure 1) are similar between discovery and validation

analyses (Figure 2, top row).

In addition, we obtained trait-loading CIs via nonparametric boot-

strap with 1000 replicates to exclude from the comparison traits with

loading intervals flanking zero. Remarkably, the overlap between the

significant contributions estimated from the unrelated and related

UKB partitions was 100%, 100%, 88%, 91%, and 75% for PEB1 to

PEB5, suggesting that the PEBs are generalizable beyond the subset

on which they were constructed. This serves as the first evidence of

F I GU R E 1 PEBs are defined by the contribution of distinct sets of EB-contributing traits. The size of the circles indicates the magnitude of
the contribution (in terms of the absolute value of PEB loadings) of the original traits to PEBs. The color scheme indicates the direction of the
contribution: positive values represent positive relationships between traits and PEBs (i.e., PEB values increase with trait phenotype values),
whereas negative values indicate the opposite (i.e., PEB decreases with trait phenotype values). For example, PEB1 is characterized by low values
across the body size and composition measures. EB, energy balance; PEB, pattern of energy balance.
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the robustness of the construction of the EB profile, a set of unique

participants’ PEB scores.

Next, we predicted PEBs in the UKB related dataset using load-

ings from the unrelated participants (predicted) and compared them

with those calculated independently on the UKB related sample

(observed). The predicted and observed PEBs in the related partici-

pants were highly correlated (r ≥ 0.95). Therefore, the unrelated par-

ticipant loadings exhibited high power to predict PEBs in the related

F I GU R E 2 PEBs from the UKB White unrelated cohort (used for discovery) are highly predictive of the PEBs in the related UKB White
cohort. The top row shows the contributions of original traits to PEB construction in two independent analyses: one in UKB unrelated
participants (y-axis) and another analysis in UKB related participants (x-axis). The trait contributions (i.e., the loadings) were highly correlated in
the two analyses. The bootstrap analysis shows the significant overlap between the traits with PEB loadings in unrelated and related sets. The
overlap was 100%, 100%, 88%, 91%, and 75% for PEB1 to PEB5, respectively. The shaded area shows the 95% CI. The bottom row shows
scatterplots, correlation, and p value between predicted and observed PEB scores for related UKB participants. PEB scores in related participants
were predicted based on loadings obtained in the unrelated participant analysis (y-axis), whereas the observed PEB scores were obtained in
independent factor analysis on the related participant data (x-axis). This figure shows that PEB construction is highly reliable across the two
independent partitions of UKB. PEB, pattern of energy balance; UKB, UK Biobank.
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subset of participants, providing additional evidence that our findings

are applicable in constructing personal profiles in participants with the

same traits even when those participants were not used in the factor

analysis.

Phenotypic variation is partitioned orthogonally across PEBs,

ensuring near-zero phenotypic correlations between integrated traits

(<1e�5). These correlations arise from genetic and environmental

covariance. Although most genetic and environmental correlations are

negligible, a few show slightly larger absolute values (Table S1).

Notably, PEB1, PEB2, and PEB5 share variation from overlapping

traits, leading to shared significant SNPs and nontrivial genetic corre-

lations among them.

GWAS of PEBs uncover pleiotropic genes that
underlie variation in EB

We estimated heritability to gain insight into the degree of genetic

control of PEBs. Then we performed GWAS to identify the following:

1) loci associated with PEBs; and (2) their pleiotropic effects on the

original traits, for comparison.

Each PEB represents a novel heritable complex trait. Estimated

heritabilities of 0.11, 0.30, 0.06, 0.08, and 0.37 for PEB1 through

PEB5, respectively (p <0.05; Table S1), demonstrate that a substantial

portion of phenotypic variation is driven by genetics. The relatively

low heritability of PEB3 (0.06) likely reflects its composition of con-

sumption of processed foods, alcohol, cheese, and tea, behavioral

traits that are generally considered to have modest genetic influence.

Conversely, the higher heritability of PEB2 and PEB5 (0.30 and 0.37)

corresponds to their inclusion of structural traits with a stronger

genetic basis, such as some body size traits (e.g., height).

Using PEB scores for the unrelated UKB participants as a discov-

ery set, we conducted a series of GWAS analyses (PEB-GWAS) using

the multivariate PEBs as outcomes. We found 41,020 SNPs that were

significantly associated with PEBs (p <[1 � 10�8]/5.0 to adjust for

multiple testing and five PEBs), indicating that more than 5% of

genetic variants are associated with correlations in traits (i.e., genetic

correlations). Because multiple PEBs were affected by the same origi-

nal traits, and these traits are expected to be affected by multiple vari-

ants, we narrowed the characterization of SNPs to those significantly

associated only with one PEB (PEB-specific variants). This restriction

resulted in 14 PEB-specific SNPs for PEB1; 8903 for PEB2; 2 for

PEB3; 289 for PEB4; and 27,313 for PEB5, with more SNPs identified

for PEBs with higher heritability, as expected. We then lumped SNPs

into groups (“peaks”) and reported the most significant SNP within a

1-Mb window (Table S2). The lumping procedure identified 3 distinct

peaks for PEB1, 149 for PEB2, 1 for PEB3, 4 for PEB4, and 239 for

PEB5. Manhattan plots for the PEB-GWAS analyses are shown in Fig-

ures S1–S5.

A pleiotropy analysis of the original traits revealed that many

genomic variants associated with PEBs (PEB-GWAS peaks) exhibited

pleiotropic effects on the original traits. We refer to these results as

“PLEIO.” In particular, we found 356 peaks with pleiotropy. In particu-

lar, 106 peaks were associated with two traits at the same time,

75 were associated with three traits, 56 with four traits, 54 with five

traits, 40 with six traits, 17 with seven traits, 7 with eight traits, and

1 peak was associated with ten original traits (Table S2).

Results from PLEIO were consistent with each PEB (Figure 3).

PEB1 and PEB2 contributing variants exhibited pleiotropic associations

with variables of both body size/composition and physical activity.

PEB4 peaks exhibited pleiotropic associations with the consumption of

nonoily fish, lamb, and pork and associations with the consumption of

cereal and beef, whereas peaks at PEB5 were associated with body

measurements, blood biomarkers, and, in some cases, dietary intake.

We did not discover significant pleiotropic effects of variants in PEB3.

These results confirm that phenotypes that are affected by the same

pleiotropic alleles also group to form PEBs. Notably, the majority of

pleiotropic genes detected by data integration and PLEIO were not

detected when original traits were analyzed individually as a control

(green vs. orange squares; Figure 3). Therefore, capturing the signal

contained in several correlated traits increases the detection of other-

wise weak associations of a pleiotropic locus via individual trait analy-

sis. Moreover, integrated trait GWAS allow for uncovering pleiotropic

genes underlying numerous positively correlated EB-contributing traits

in a more efficient manner than PLEIO analysis that involves hypothe-

sis testing for multiple traits.

GWAS peaks validated in the ARIC study and UKB
related participant data

For the GWAS validation in the ARIC study, we identified eight traits

corresponding to the discovery study (32 traits in UKB). The subset of

traits for validation consisted of blood biomarkers (glucose, choles-

terol, and triglycerides in blood), weight, height, waist circumference,

and self-reported physical activity (intensity of moderate and vigorous

exercise). Next, we conducted a new independent analysis in which

we derived PEBs and conducted GWAS. Of the total 396 PEB-GWAS

F I GU R E 3 PEB-GWAS and PLEIO study. The PEB-GWAS peaks are represented by their lead SNPs. The different colors of reference SNP
IDs (left) indicate PEB1 through PEB5, with PEB1 in blue, PEB2 in violet, PEB3 in green, PEB4 in brown, and PEB5 in orange. Functional elements
(e.g., coding, noncoding, intergenic regions) are included within the parentheses next to the SNP IDs. The first panel shows validation in the UKB
related dataset and the ARIC study (yellow squares). The following panels summarize the results of PLEIO analysis, with the original trait labels at
the bottom and green squares indicating peaks only detected in PLEIO analysis but not individual GWAS (control), given across four main
categories of traits used in the analysis. ARIC, Atherosclerosis Risk in Communities; GWAS, genome-wide association study; ID, identifier; PEB,
pattern of energy balance; PLEIO, individual phenotypes using multitrait GWAS; SNP, single-nucleotide polymorphism; UKB, UK Biobank.
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peaks, 39 were validated in the ARIC study, i.e., 15 for PEB2 and 24

for PEB5. Despite a far smaller number of traits and participants in

the ARIC study, we confirmed 39 PEB peaks offering strong indica-

tions of their biological importance as opposed to spurious correla-

tions. The list of the validated peaks, associated traits, and gene sets

can be found in Figure 3 and Table S2. A list of lead SNPs associated

with 39 peaks validated in the ARIC study data is given in Table S3.

In addition, we conducted a second validation of the genetic asso-

ciations using the White related UKB participants, with the same traits

as the discovery data. With the 100% coverage of traits, the majority

of the peaks inferred in the unrelated UKB participants were con-

firmed in the related UKB partition (Table S2).

Genomic variants associated with PEBs mapped onto
previously known and unknown genomic regions

The entire set of annotated PEB-GWAS peaks is presented in

Table S2 and eQTLs in Figure S6. Two PEB1 peaks mapped onto the

following genes: ULK4 and PACS1. PACS1, represented by rs482414,

has been previously associated with obesity [28] and [29] sedentar-

ism. The ULK4 gene (e.g., rs11707955) has been associated with

BMI [30], and its expression (Figure S6) has been associated with

physical activity-related traits [31].

Five peaks of PEB2 that were validated in the ARIC study and the

UKB related participants mapped onto FNDC3B, ANAPC10, CRADD,

SULT1A1, and AXIN1. Two of the significant SNPs for PEB2 showed

previous associations with body composition, physical activity, and

blood triglycerides; rs582780 (in FNDC3B) showed association with

hip circumference [32]; rs11100870 (ANAPC10) with BMI [33];

rs2411453 (SULT1A1) with body fat [32] and BMI [34]; FNDC3B with

physical activity [35]; ANAPC10 with lung capacity [36] and lean mass

(thereby indirectly to exercise performance); and AXIN1 with

BMI [37].

Two PEB4 peaks mapped onto coding regions of H2AZP6 and

SKIDA1.

For PEB5, 11 peaks were validated in both datasets and mapped

onto DOCK7, APOB, NOSTRIN, MIR5591, GHR, WDR70, VEGFA,

MEGF9, ERLIN1, KCNJ16, and HNF4A. Many of these peaks were

associated with obesity biomarkers, cholesterol, triglycerides, body

composition, and dietary intake. rs2862954 (ERLIN1) was associated

with cholesterol, lean mass, and high-density lipoprotein cholesterol

[38]. The peak at rs10889332 (DOCK7), associated with triglycerides,

lean mass, and waist circumference in our study, has been previously

associated with serum lipid levels [39], perhaps reflecting an indirect

effect of lipid metabolism and lean mass.

Genes associated with PEBs are enriched for
numerous functional classes

PEB-GWAS peaks are typically mapped onto intronic (44%) or non-

coding transcript variants (16%) and downstream (12%) or upstream

gene variants (9%). In addition, most peaks were missense (76%),

followed by synonymous (23%) and nonsense variants (1%). Details of

the peaks and genomic regions are in Figure S6. PEB-GWAS peaks

were enriched for 30 canonical pathways (false discovery rate p <0.05;

Table S4). The 10 pathways with a lower p value (all with a false discov-

ery rate p <1 � 10�4) were as follows: FXR/RXR activation; cell cycle:

G1/S checkpoint regulation; protein kinase A signaling; insulin secre-

tion signaling pathway; maturity onset diabetes of young signaling;

cyclins and cell cycle regulation; aryl hydrocarbon receptor signaling;

LXR/RXR activation; role of JAK2 in hormone-like cytokine signaling;

and autophagy.

DISCUSSION

Addressing the obesity epidemic has proved to be challenging, partly

because obesity arises from the interplay of numerous factors, includ-

ing exogenous as well as behavioral phenotypes, that result in a posi-

tive EB in individuals. Therefore, understanding EB and mapping

genetic loci associated with it may require considering multiple phe-

notypes jointly. Most obesity studies, however, have analyzed EB-

related traits in isolation. Herein, we used sparse factor analysis to

integrate an extensive set of EB-related phenotypes and identified

multiple genetic loci associated with obesity through the compound

proxy measure of EB, some of them previously known and others that

are new associations.

Previous studies have integrated related traits but have been

limited to a category, such as diet or physical activity [14]. Our com-

prehensive approach integrated traits across categories, i.e., dietary

intake, physical activity, body size and composition, and metabolic

profile, resulting in five main PEBs. Interestingly, the traits across dis-

tinct categories tend to covary, yielding unique cross-category inte-

grative PEBs, which were previously unknown. PEB1 and PEB2

primarily integrated body size and composition with activity, distin-

guishing variation among generally active and inactive individuals.

PEB3 integrated numerous diet traits, primarily driven by consump-

tion of red meat, whereas PEB4 was primarily driven by produce con-

sumption, capturing dietary preferences. Finally, PEB5 integrated

traits across several categories and primarily captured variation owing

to body size and consumption of various food items with triglyceride

and cholesterol levels. Jointly, the five main PEBs summarized varia-

tion patterns in the extensive UKB data across numerous EB-related

traits from distinct categories, profiling EB across participants.

The sparse factor analysis identified traits that have a partially

shared genetic basis. For instance, the summed metabolic equivalent

of task, summed days of activity, and summed minutes of activity all

contribute to PEB1. The traits that primarily contribute to PEBs have

similar variation patterns indicating likely common underlying environ-

mental and/or genetic effects. For example, we found that different

physical activities, from walking to vigorous exercise, co-occur, cap-

turing generally active or inactive individuals. Interestingly, elevated

blood lipids coincided with moderate consumption of a wide class of

unprocessed meats.

This research additionally demonstrates the utility of sparse latent

factor analysis [21] in summarizing numerous continuous and
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categorical traits into compound phenotypes. The PEBs offered addi-

tional insight into the genetic basis of EB, extending beyond the

results of numerous single-trait analyses. Previous multitrait studies,

including canonical correlation analysis [40], multivariate multiple

regression [41], and principal component analysis [8], have suggested

that the integration may increase efficiency controlling for false posi-

tives that arise owing to multiple comparisons when testing traits

independently. This control is achieved without sacrificing the power

to detect true associations, such as in the case of multiple comparison

corrections. Our approach produced meaningful integrative traits by

imposing sparsity on factor loadings, resulting in factors composed of

only a subset of nontrivial contributions. Therefore, the sparse latent

factor provides a promising tool to advance the study of the genetics

of complex and correlated traits by complementing results from indi-

vidually based studies.

Our approach found genetic variants for EB that have already been

reported for obesity-related traits and uncovered new variants underly-

ing integrated EB-related traits that have not been directly associated

with compound obesity-related phenotypes such as BMI. These results

indicated a common genetic basis, potentially pleiotropic for covarying

traits. Interestingly, the results of PLEIO analysis perfectly align with

PEB loadings, i.e., the traits that strongly affected the same PEB tend

to be underlined by the same pleiotropic gene(s), pointing to a partially

shared genetic basis. Many of these pleiotropic loci were not previously

associated with obesity measures, such as MIR5591, FNDC3B,

ANAPC10, SULT1A1, AXIN1, SKIDA1, ERLIN1, and DOCK7. In addition,

although we found a substantial agreement among GWAS results using

PEB-GWAS and those using multivariate analysis through PLEIO test,

the majority of newly discovered pleiotropic loci were not discovered

in association analyses of individual traits.

Importantly, most of the regions harboring variants reaching

GWAS-significant associations fall into protein-coding regions, many

affecting splicing, including retained introns and nonsense mutations,

which induce the production of nonfunctional or potentially incom-

plete proteins. Many of the detected variants are in genes involved in

canonical EB pathways. Several genes were linked to insulin secretion

signaling, LXR/RXR activation, and JAK2, which are established obe-

sity pathways [42], inflammation [15], and adipocyte metabolism [43].

Additional genes mapped onto pathways proposed as emergent tar-

gets to combat obesity, such as FXR/RXR activation, aryl hydrocarbon

receptor signaling, and autophagy [44]. Other genes mapped to gusta-

tion pathways (ADCY4), supporting the role of neurological processing

of gustatory stimuli in food selection [45]. Some genes have been pre-

viously reported as cis-eQTLs. Other significant SNPs are in the

protein-coding regions and exhibit pleiotropic effects.

The caveat of this approach is that a portion of the phenotypic

variation is captured by the main PEBs. Particularly, PEB1 through

PEB5 explained 39% of the total phenotypic variation owing to

covariation among traits. Such analysis thus complements and does

not replace the individual GWAS approach. Nevertheless, we identi-

fied new genes involved in EB and genes already known.

The study caveats include limited cross-validation, precorrections

for socioeconomic status, and unsegregated sexes. We integrated an

extensive set of EB traits, leveraging the UKB’s large number of par-

ticipants, wide breadth of traits, and consistent data collection. Our

first tier of validation was on an independent partition of the UKB,

which provided strong support for the predictability of PEBs. None-

theless, the second tier of validation relied on an independent dataset

with a significantly smaller number of participants and traits, adding a

caveat to the study. Another caveat consists of our correction for

socioeconomic status to account for the different access to lifestyle

choices (e.g., access to a gym, quality food). This correction may

reduce the power to discover SNPs associated with socioeconomic

status. Finally, this study investigated the sexes together, limiting its

ability for gender-specific effects.O
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