Preliminary Examination of Racial Disparities in Cerebral Palsy: Using gene expression and clinical data

Jaime C. Slaughter-Acey, PhD MPH

College of Nursing & Health Professions Epidemiology & Biostatistics Drexel University

Racial Disparities in CP

- In a review of literature published since 1993, reports on CP prevalence show Black children have a higher prevalence that White children.
 - % Difference in prevalence ranged from 15-29%
- Most recently Maenner et al (2012) reported the CP prevalence for Black children to 3.9 per 1000 children.

– Whites: 2.7/1000 children;

Racial Disparities in CP

- There is a striking lack of research focused on understanding the cause(s) of racial disparities in CP.
- Searching US-based studies published 1993, we found only 1 study which attempted to explain racial disparities in CP by investigating basic socio-demographic factors along with the onset of prenatal care, birthweight, and gestational age.

Low Birthweight and Preterm Birth

- Low birthweight and preterm birth are powerful predictors of CP.
- Hypothesized that Black-White difference in prevalence of low birthweight and preterm birth are the cause of the Black-White disparities in CP.
- However, Black-White disparities in CP prevalence have been found even among term and normal birthweight infants.

• Are there any other pathways that may lead to disparities?

Infection/Inflammation

- Research suggests that maternal infections during pregnancy increase the risk of having an infant being diagnosed with CP.
- Many maternal infections including chorioamnionitis disproportionately affect black women.
- Inflammatory responses to maternal infection mediated by cytokines and chemokines may not be the same for every racial or ethnic group.

Birth Asphyxia

- Black children have a higher risk of birth asphyxia than White children.
 - California study: Wu et al (2004) found Blacks were 28% more likely than Whites to be diagnosed with birth asphyxia.
 - National study: Mohamed et al (2014) found Black were 23% more likely than Whites to have a diagnosis of birth asphyxia.

Objective

 Describe socio-demographic, clinical, and biological factors occurring during pregnancy and in the immediate perinatal period that may lead to racial disparities in CP using gene expression and clinical data.

- Data stem from the Origins, Wellness & Lifehistory in CP (OWL) Study
 - 2009-2012 matched case-control study
 - Children with and without CP
 - Born in Michigan
 - Age 2-15 years at time of recruitment
 - Specialty and Primary Care Clinics
 - Ann Arbor, Lansing, and Grand Rapids Michigan

- Multiple sources of data in the OWL Study
 - Birth Certificate
 - Maternal & Child Hospital Discharge Abstracts
 - Maternal Interview
 - mRNA isolated from Archived Newborn
 Bloodspots

Prelim Racial Disparities Study

Participants restricted to:

- CP diagnosis
- Race: Black or White
 - child's race was defined by maternal race.
- Birth Certificate and Microarray Data available
- White children had to have:
 - birth year ± 1 year of a Black child with CP
 - gestational age group similar to that of a Black child with CP
 - <28 wks, 28-32 weeks, >37 weeks

Overall Sample Characteristics (N=89)

Characteristics	% (n)	
Race White Black	84.5 (75) 15.7 (14)	
Birth Year Mean (SD), Range	2003 (4), 1994-2009	
Male	57.3 (51)	
Gestational Age Mean (SD), Range <37 weeks	35.6 (5.8), 23-42 31.5 (28)	

Statistical Analysis: Clinical Data

In all clinical data analyses:

- Predictor variable: race
- Outcome: maternal or child characteristic of focus
- Categorical Characteristics
 - Used Logistic Regression with robust error estimation
 - Used Exact Logistic Regression when maximum likelihood estimation did not converge.
- Continuous Characteristics
 - Linear regression with robust error estimation

Statistical Analysis: Clinical

- Unadjusted and adjusted regression models
 - adjusted for child's birth year, sex, and gestational age for all outcomes.
 - When examining disparities in functional limitations, regression models where further adjusted for CP type.
 - child's birth year, sex, gestational age, and CP type
- Used a relaxed p-value of 0.10 to denote statistical significance.

Clinical Data Outcomes

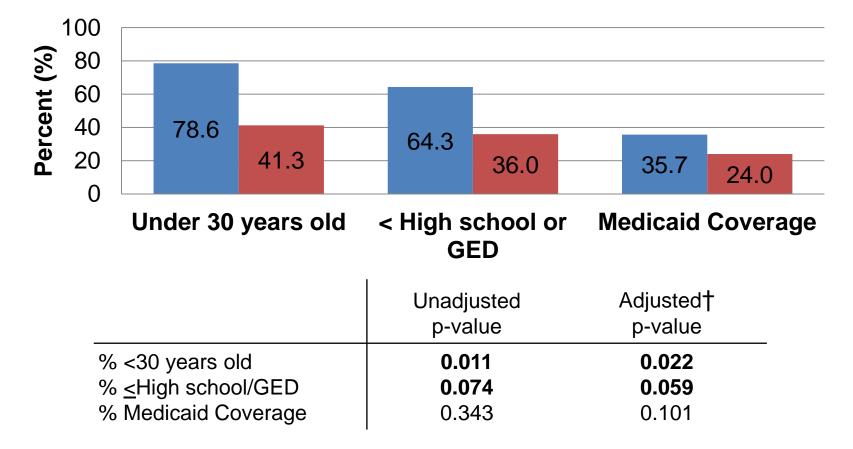
- Socio-demographic (at time of child's birth)
 - Maternal Age
 - Maternal Education
 - Medicaid Coverage
- Pregnancy & Birth Characteristics
 - Birthweight
 - Fetal Growth (Small- and Large-for-gestational age)
 - 5 minute Apgar Score
 - Labor & Delivery Complications
 - Signs of Neonatal Encephalopathy
 - Maternal Infection
- Cerebral Palsy
 - CP Type (hemiplegic, diplegic, quadraplegic)
 - Functional Limitations (gross motor, manual ability, and communication)

Statistical Analytic: Microarray Data

- 7 gene sets (3 empirical; 4 canonical) representing four physiological pathways hypothesized to contribute to the development of cerebral palsy.
 - Inflammatory*
 - Hypoxic*
 - Thyroidal
 - Coagulative

Statistical Analytic: Microarray Data

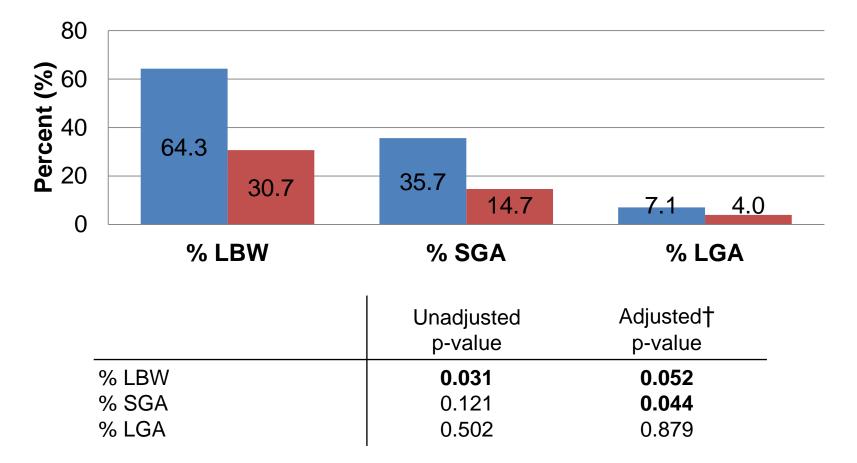
- Used Gene Sets Net Correlations Analysis (GSNCA) to assess differences in intergene correlations in gene sets between Black and White children with CP.
 - Differences between groups in the structure of genes' cross-correlations for a given gene set.
 - Adjusted for birth year, sex, and gestational age.


RESULTS: CLINICAL DATA

Maternal Characteristics^{a,b}

†Adjusted for birth year, sex, gestational age.

Black White

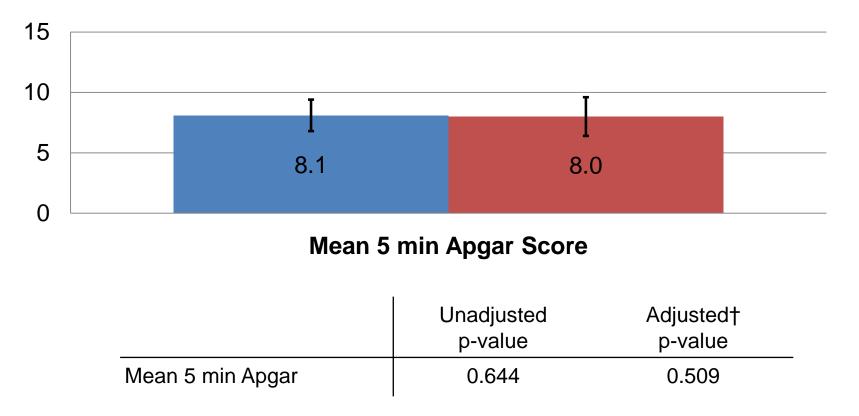

a. At time of child's birth.

b. N= 89 children (14 Black; 75 White)

Birth Characteristics^a

+ Adjusted for birth year, sex, gestational age.

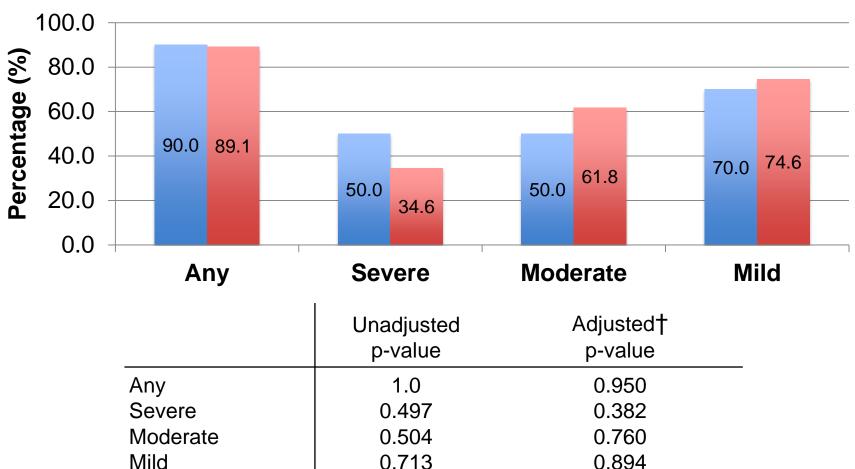
Black White



a. N= 89 children (14 Black; 75 White)

Birth Characteristics^a

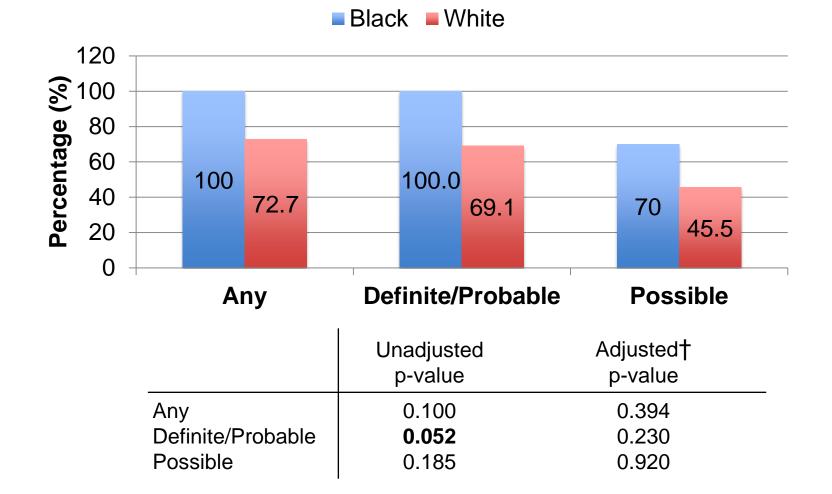
+ Adjusted for birth year, sex, gestational age.


Black White

a. N= 89 children (14 Black; 75 White)

Labor & Delivery Complications^a

+ Adjusted for birth year, sex, gestational age.

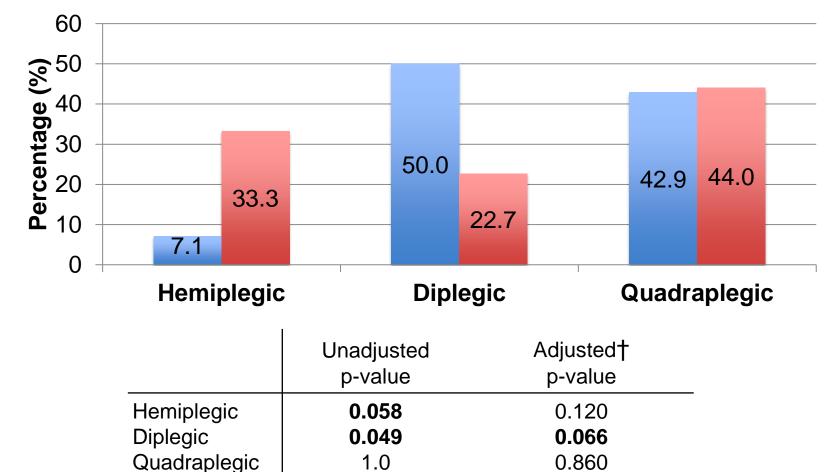


Black White

a. 24 kid missing at least 1 source of clinical data. N= 65 (55 White and 10 Black)

Signs of Neonatal Encephalopathy^a

+ Adjusted for birth year, sex, gestational age.

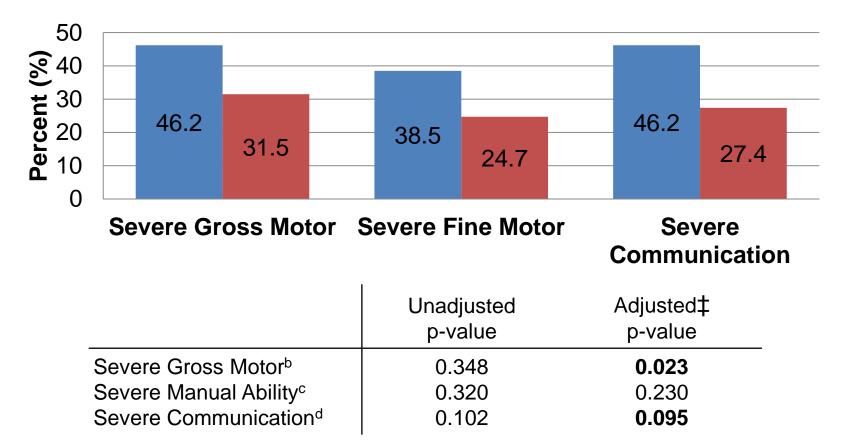


24 kid missing at least 1 source of clinical data. N= 65 (55 White and 10 Black)

a.

CP Type^a

+ Adjusted for birth year, sex, gestational age.



Black White

a. 1 child missing information on CP type (n=88).

Severe Functional Limitations^a

‡ Adjusted for birth year, sex, gestational age, and CP type.

Black White

- a. 3 children missing information on functional scales (1 Black; 2 White). N=86
- b. GMFCS LEVEL \geq 4.
- c. MACS LEVEL \geq 4.
- d. CFCS LEVEL \geq 4.

RESULTS: MICROARRAY DATA

Hypothesized Pathways Leading to Cerebral Palsy

Pathway	Gene Sets, n=number of genes	GSNCA p-value
Coagulative	Canonical GO:0007596, (n=93)	0.1149
Inflammatory	Canonical GO:0050727, (n=31)	0.4305
	Empirical FIRS, (n=36)	0.0399
Hypoxic/Asphyxial	Canonical ASPHYXIAL, (n=36)	0.0420
	Empirical HYPOXIA.1, (n=31)	0.5184
Thyroidal	Canonical V\$T3R_Q6, (n=199)	0.2797
	Empirical T3.UP, (n=139)	0.0869

Discussion

 Preliminary results suggest low birthweight and fetal growth restriction may be one pathway through which racial disparities in CP manifest, but...

there may be more to the story.

Discussion

- In analysis of clinical data, we found no significant differences between Whites and Blacks in labor complications, signs of neonatal encephalopathy, maternal infection.
- However, significant differences in gene expression suggest asphyxia and inflammation may be physiological pathways through which racial disparities operate.
- Our preliminary results also a hormonal physiological pathways might also lead to racial disparities in CP.

College of Nursing and Health Professions

Discussion

- Like Maenner et al (2012), we found Black children with CP were more likely to have severe gross motor function limitations than White children with CP.
- We also found Black children with CP had greater communication functional limitations communication than White children with CP.
- Additional research is needed to better understand what factors that drive these disparities in CP.

College of Nursing and Health Professions

ACKNOWLEDGEMENTS

• OWL Study Team

- Nigel Paneth, MD (PI)
- Madeleine Lenski, MS
- Qing Li, PhD
- Robert Podolsky, PhD at Wayne State University
- The OWL Study was funded by grant no. 1R01NS055101 to Dr. Nigel Paneth.

References

- 1. Maenner, M.J., Benedict, R.E., Arneson, C.L., Yeargin-Allsopp, M., Wingate, M.S., Kirby, R.S., Braun, K.V.N., and Durkin, M.S. (2012). Children With Cerebral Palsy: Racial Disparities in Functional Limitations. Epidemiology; 23, 35-43.
- 2. Wu, Y.W., Croen, L.A., Shah, S.J., Newman, T.B., and Najjar, D.V. (2006). Cerebral palsy in a term population: risk factors and neuroimaging findings. Pediatrics 118, 690-697.
- 3. Wu, Y.W., Xing, G., Fuentes-Afflick, E., Danielson, B., Smith, L.H., and Gilbert, W.M. (2011). Racial, ethnic,and socioeconomic disparities in the prevalence of cerebral palsy. Pediatrics 127, e674-e681.
- 4. Winter, S., Autry, A., Boyle, C., and Yeargin-Allsopp, M. (2002). Trends in the prevalence of cerebral palsy in a population-based study. Pediatrics 110, 1220-1225.
- 5. Wilcox, A.J., Basso, O., and Weinberg, C.R. (2011). On the problem of adjustment for birthweight.
- 6. Pediatrics.
- 7. Menon, R., Dunlop, A.L., Kramer, M.R., Fortunato, S.J., and Hogue, C.J. (2011). An overview of racial disparities in preterm birth rates: caused by infection or inflammatory response? Acta obstetricia et gynecologica Scandinavica 90, 1325-1331
- 8. Velez, D.R., Fortunato, S.J., Morgan, N., Edwards, T.L., Lombardi, S.J., Williams, S.M., and Menon, R. (2008). Patterns of cytokine profiles differ with pregnancy outcome and ethnicity. Human reproduction23, 1902-1909.

References

- Wu, Y. W., Backstrand, K. H., Zhao, S., Fullerton, H. J., & Johnston, S. C. (2004). Declining diagnosis of birth asphyxia in California: 1991–2000. Pediatrics, 114(6), 1584-1590.
- Mohamed, M. A., & Aly, H. (2014). Impact of race on male predisposition to birth asphyxia. Journal of Perinatology, 34(6), 449-452.
- Ho, N. T., Furge, K., Fu, W., Busik, J., Khoo, S. K., Lu, Q., ... & Paneth, N. (2012). Gene expression in archived newborn blood spots distinguishes infants who will later develop cerebral palsy from matched controls. Pediatric research, 73(4-1), 450-456.
- Rahmatallah, Y., Emmert-Streib, F., & Glazko, G. (2014). Gene Sets Net Correlations Analysis (GSNCA): a multivariate differential coexpression test for gene sets. Bioinformatics, 30(3), 360-368.