

REHABILITATION ROBOTICS

Team Science Designing the Future

Edward A. Hurvitz, M.D.

What is a Robot?

A device that automatically performs complicated often repetitive tasks; a mechanism guided by automatic controls

Rehabilitation Robotics

Types of Robots

Prosthetic Limbs

Powered OrthoticsTherapy Assist Devices

- Mobility Units
- Environmental Control/Manipulation Units

Brain Computer
 Interface

How does that work?

- Clinician helps define clinical need for better orthotic
- Mechatronics designs the components for a new orthotic that works with feedback
- Bioengineer develops ways to improve feedback mechanisms to provide data to orthotic
- Kinesiologist gives input on design based on biomechanical principles, and tests biomechanic output
- Clinician evaluates changes in function with new device

... and everyone give input at every phase of the project

Lokomat Training for Ambulation

- Weight supported Treadmill
- Single therapist
- Variation of program based on child's own abilities
- Varies weightbearing

Lokomat Results

- Improved Gait speed
- Increased endurance
- Higher scores on GMFM D and E
- Correlated with amount of training
- Some maintenance over time
- Some adverse effects
 - Muscle soreness, skin abrasion in up to 30%
- Greater effect for GMFCS I-II

Improved Kinematics (Patritti et al)

Decreased double support phase
 Improved stride length
 Decreased ankle dorsiflexion in stance (decreased crouch)

Spasticity

- Lokomat measures muscle stiffness
 Calculates torque at different movement speeds
 Tone reduction noted after single training session
 - Not measured over time

Upper Extremity Robotic Therapy

- Emphasizes repetition
- Children enjoy sessions, highly motivated
- Targeted movements with robotic assisst
- Provides visual feedback
- Offers games during breaks

CP study

□ 12 subjects Improved QUEST Dissoc. Movements Wt Bearing Total Fugl-Meyer score improved MAS went down • Postive results 1 month r/u

Robotics vs. CIT

- Benefits patients with lower MACS level, ROM
- Less therapist intensive
- For both, less involved patients have better outcome
- Current protocol seemed best combined with outside RX

The Robotic Orthosis Lokomat

Institute of Automatic Control ETHZ + University Clinic Balgrist + Hocoma GmbH

Powered Orthoses

Direct Brain Interface

- EEG signals control system
- Works computer
- Can control W/C, ECU
- Currently slow, trying to improve scanning and speed

Robotic Power Mobility

- Crash avoidance
 Route Planning/Path Guidance
- Direct Brain Interface

Feeding robot

Consistent presentation of food
 Feeding did not go as well as with hand feeding.

Robots What we need to know

- What can they do?
 - As well as we do now
 - Consistency
 - Dependability
 - Cost Effective
 - Better than we do now
 - Adding to quality of life
 - Improving therapy effectiveness
 - Making rehabilitation more available