Finding Access

...where it may be found

John Bryson Eulenberg, Ph.D.

Professor, Communicative Sciences and Disorders Director, Artificial Language Laboratory Michigan State University

"Cerebral Palsy: Toward Collaborative Research In Michigan" Michigan League, Ann Arbor, Michigan, March 13, 2008

Cerebral Palsy and Access

"Individuals with cerebral palsy primarily experience difficulty with motor skills, which vary depending on the location of the brain lesion" (Beukelman & Mirenda, 2005, p.236)

The incidence of dysarthria among persons with cerebral palsy estimated from 31% to 88%. (ibid, p.237)

Cerebral Palsy and Access

Modern Augmentative and Alternative communication (AAC) technology can help nonspeaking persons to achieve communication and environmental control.

• A significant number of individuals with CP find problems with access to AAC technology.

Society's tools define "standards of access"

 Typical standard input systems involving finemotor dexterity

- Keyboard
 - Mouse
 - Key-operated lock
 - Door handle
 - Steering wheel
 - Foot pedal

Game controllers

A Promising Linkage for Collaborative research

Hierarchy of Control Site Preference

Hierarchy of Control Sites

Hand

Multi-finger keyboarding Single-finger pointing and activating keys Splint-mounted pointer Head movement with Head-mounted pointer/stick Head-mounted light sensor Switch/es mounted on head rest ■ Camera aimed at face or reflector

Hierarchy of Control Sites

Mouth

- Orofacial gestures
- Lip reading
- Mouthstick
- Eyes
 - Eye gazing monitored by camera
 - Eye gazing monitored by visual evoked response
 - Blinking to control single switch
 - Winking to activate single switch
- Foot
 - Pedal switch
 - Foot-operated 2-dimensional pointer (joystick)

Pattern Recognition

Pattern Recognition of
Eye-blink patterns
Speech (Speech Recognition)
Individual Words and Phrases (Word Recognition)
Vocalizations (Vowel Recognition)
Facial Gestures

The SCATIR Switch

Self-Calibrating Auditory-Tone InfraRed Switch – Developed at MSU Artificial Language Lab, Digital SCATIR switch manufactured and marketed by Tash, Inc.

An IR light beam is reflected off a surface (face, eye, eyelid, toe, etc.

Detects purposive movement by monitoring the derivative of the intensity of the reflected IR light.

Useful for capturing purposive contraction of small muscle groups.

Optical Detented Joystick

- For hand or foot control
- Filters out spasticity and tremor by providing local mechanical stability at individual points within a two-dimensional field of stations.
- Present status: in use.
- In development: digital version, using forcefeedback design.

Towards a Michigan Access Initiative

- Promote Michigan collaboration in research on Access
- Regular conferences on Access Techniques
- Identify current centers of excellence within Michigan's universities, hospitals, rehab centers, and school districts
- Identify critical problem areas for study

References

- Beukelman, David, and Pat Mirenda. <u>Augmentative and Alternative</u> <u>Communication</u>. 3rd ed. Baltimore: Paul H. Brookes, 2005.
- Blosser, Stephen, and John Eulenberg. "Digital, self-calibrating proximity switch", Patent Filing 20050209828, U.S. Patent Office, 2005.
- Eulenberg, John, and Stephen Blosser. "A Foot-Controlled VOCA for a Multilingual User," Proceedings of RESNA '93, Las Vegas, Nevada, June 1993, pp. 116-118.

